Gefitinib, an EGFR Tyrosine Kinase inhibitor, Prevents Smoke-Mediated Ciliated Airway Epithelial Cell Loss and Promotes Their Recovery
نویسندگان
چکیده
Cigarette smoke exposure is a major health hazard. Ciliated cells in the epithelium of the airway play a critical role in protection against the noxious effects of inhaled cigarette smoke. Ciliated cell numbers are reduced in smokers which weakens host defense and leads to disease. The mechanisms for the loss of ciliated cells are not well understood. The effects of whole cigarette smoke exposure on human airway ciliated ciliated cells were examined using in vitro cultures of normal human bronchial epithelial cells and a Vitrocell® VC 10® Smoking Robot. These experiments showed that whole cigarette smoke causes the loss of differentiated ciliated cells and inhibits differentiation of ciliated cells from undifferentiated basal cells. Furthermore, treatment with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, Gefitinib, during smoke exposure prevents ciliated cell loss and promotes ciliated cell differentiation from basal cells. Finally, restoration of ciliated cells was inhibited after smoke exposure was ceased but was enhanced by Gefitinib treatment. These data suggest that inhibition of EGFR activity may provide therapeutic benefit for treating smoke related diseases.
منابع مشابه
Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals.
Epithelial hyperplasia and metaplasia are common features of inflammatory and neoplastic disease, but the basis for the altered epithelial phenotype is often uncertain. Here we show that long-term ciliated cell hyperplasia coincides with mucous (goblet) cell metaplasia after respiratory viral clearance in mouse airways. This chronic switch in epithelial behavior exhibits genetic susceptibility ...
متن کاملGefitinib prevents bleomycin-induced lung fibrosis in mice.
RATIONALE Transforming growth factor-alpha and epidermal growth factor (EGF), the ligands for EGF receptor (EGFR), stimulate fibroblast proliferation and play an important role in the pathogenesis of pulmonary fibrosis. Therefore, inhibition of the EGFR signal by an EGFR tyrosine kinase inhibitor (EGFR-TKI) may prevent pulmonary fibrosis. However, there is a possibility that blocking the EGFR s...
متن کاملRegulation of cigarette smoke-mediated mucin expression by hypoxia-inducible factor-1α via epidermal growth factor receptor-mediated signaling pathways.
Cigarette smoking is strongly implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Mucus hypersecretion is the key manifestation in patients with COPD and mucin 5AC (MUC5AC) is a major component of airway mucus. Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor which can be stimulated to bind to the MUC5AC promoter and induce MUC5AC promoter activation. P...
متن کاملReverse epithelial-mesenchymal transition contributes to the regain of drug sensitivity in tyrosine kinase inhibitor-resistant non-small cell lung cancer cells
Tyrosine kinase inhibitors (TKIs) are currently the first-line treatment for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations. These patients receive platinum-based chemotherapy as the second-line treatment after they develop resistance to TKIs. Many patients regain sensitivity to the TKIs used in the first-line treatment after the failure of ch...
متن کاملIntratumoral Heterogeneity in EGFR-Mutant NSCLC Results in Divergent Resistance Mechanisms in Response to EGFR Tyrosine Kinase Inhibition.
Non-small cell lung cancers (NSCLC) that have developed resistance to EGF receptor (EGFR) tyrosine kinase inhibitor (TKI), including gefitinib and erlotinib, are clinically linked to an epithelial-to-mesenchymal transition (EMT) phenotype. Here, we examined whether modulating EMT maintains the responsiveness of EGFR-mutated NSCLCs to EGFR TKI therapy. Using human NSCLC cell lines harboring muta...
متن کامل